At first glance, the Neo-Classical architecture of the Charlotte Research Institute (CRI) campus is in contrast to the high-tech curriculum of an energy building. Design parameters such as symmetry and classical massing can inhibit a passive environmental approach. The intent is to combine old and new into a truly “transitional” style that provides a classical framework in which more contemporary elements can be expressed. Current fenestration treatments bring a layer of interest to the façade, and outwardly portray the building as an extension of the curriculum it serves. The front elevation is shaped by the ellipse the building faces, and allows daylight into a gallery intended for project display. The inclusion of a research-oriented courtyard, along with the entry sequence brings nature to the front door by framing the connection to an existing greenway. The building is organized around “nodes of collaboration” in public areas intended to bring together students, professors, and industry partners to create a synergistic environment for the improvement of energy supply and delivery.

The campus master plan dictated a building orientation that did not offer optimum conditions for harvesting daylight without introducing additional heat load. These external shading devices eliminate direct solar penetration from March through September, and the internal light shelves reflect daylight and push it further into the space.

The Daylighting + Energy Performance Lab evaluated the base case clerestory design and seven alternates that included various combinations of shading devices. The diagrams indicate the difference in quantity and balance in luminance values when the partial clerestory shade was added and the lower level windows were removed. The addition of the solar shading mitigates hot spots and yields a more even or uniform light distribution throughout the space.
In order to introduce natural light into the center of a floor plate, the design team utilized an elliptical daylight well that extends more than 30 feet above the roof level. The opening is shaded by the penthouse forms on both sides, and a large roof overhang. Each floor includes a translucent light shelf made from 100% recycled materials that captures daylight falling in the atrium space and reflects it deeper into the interior spaces. The daylight also illuminates the light shelves to combine aesthetics with functionality. The combination of fenestration and light shelves yields more than 80 footcandles of natural light at the first floor level, which is laboratory quality luminance.

LEED SCORES
NC VERSION 2.2 - GOLD OBJECTIVE (39-35 POINTS)
- SITE 10/14
- WATER 06/05
- EN-ENERGY 08/17
- MR MATERIALS 05/13
- BD INNOVATION 04/15
- RD INDOORS 10/15

At first glance the Neo-Classical architecture of the Charlotte Research Institute (CRI) campus is in contrast to the high-tech curriculum of an energy building. Design parameters such as symmetry and classical massing can inhibit a passive environmental approach. The intent is to combine old and new into a truly "transitional" style that provides a classical framework in which more contemporary elements can be expressed. Current fenestration treatments bring a layer of interest to the façade, and outwardly portray the building as an extension of the curriculum it serves. The front elevation is shaped by the ellipse the building faces, and allows daylight into a gallery intended for project display. The inclusion of a research oriented courtyard, along with the entry sequence brings nature to the front door by framing the connection to an existing greenway. The building is organized around "nodes of collaboration" in public areas intended to bring together students, professors, and industry partners to create a synergistic environment for the improvement of energy supply and delivery.

ENERGY SAVINGS THROUGH DAYLIGHTING

Office (Southwest)

Cost Comparison
Base Case Annual Cost: $23,296.11
Intuitive Case Annual Cost: $12,732.00

Emissions Comparison
Base Case Annual Emissions: 513,591.31 Lbs of CO2
Intuitive Case Annual Emissions: 280,648.46 Lbs of CO2

Usage Comparison
Base Case Annual Electricity Usage: 232,961.1 kwh
Intuitive Case Annual Electricity Usage: 127,305.9 kwh

EPIC Bay

Cost Comparison
Base Case Annual Cost: $1,462,779.00
Intuitive Case Annual Cost: $368,211.00

Emissions Comparison
Base Case Annual Emissions: 32,248.76 Lbs of CO2
Intuitive Case Annual Emissions: 8,117.64 Lbs of CO2

Usage Comparison
Base Case Annual Electricity Usage: 14,627.79 kwh
Intuitive Case Annual Electricity Usage: 3,682.10 kwh

54% OCCUPIED SPACE DAYLIT

INDOOR ENVIRONMENTAL QUALITY
1. Alternative Transportation

Reserving these parking spaces closest to the building encourages faculty and staff to carpool and drive vehicles that use less fuel and produce less pollution than typical vehicles. Brisk walk and showers are provided to encourage alternate means of transportation.

2. Energy Use

This facility uses an active chilled beam system to provide primary space comfort needs. Each space will be supplemented with outside air directly from heat recovery units located in the rooftop penthouse. Each heat recovery unit is nearly 70% effective in recovering energy from ventilation air exiting the building to the raw outside air entering the building. The building is designed to consume 30% less energy than a typical building.

3. Materials

There are many different materials used in this facility that conserve resources and protect the environment. Points and scores meet strict criteria for low emissions of harmful air contaminants. A portion of the wood in the building is from certified suppliers that use environmentally responsible forest management practices.

4. Reduced Water Usage

This facility will utilize 30% less domestic water than a typical building by utilizing low flow fixtures and a gray water system. This gray water system collects the building HVAC condensate and diverts it into a 6,000-gallon underground holding tank. The water source is treated with ultra-violet light and injected with blue biodegradable dye before distribution to the water closets and urinals.

5. Water Cycle

The building stormwater management system is an integrated solution that will collect, treat, and store the runoff from the 1” storm event. This system includes approximately 20,000 gallons of below grade detention storage for the urban area and provide filtration en route to the research spaces and the rain gardens that sit on the events lawn. The elliptical site is designed to extend the building and connect the interior public spaces utilized for recruiting events and awards ceremonies and learn. Daylight harvesting was integrated with exterior shading to allow no net increase to the cooling load. Two types of glazing are used to differentiate windows for light versus windows for cooling loads. Two types of glazing are used to differentiate windows for light versus windows for cooling loads.

6. Recycling Stations

Stationed in the lobby, glass, plastic, and aluminum are located throughout the building in public areas to encourage less waste in the landfill.

7. Site Ecology

The rain gardens have been engineered to treat the 1-year 24-hour rainfall event and bypass the 10, 25, and 50 year storm events. The discharge from the site will be directed underground detention. The water quality structures. Additionally, the roof runoff will be directed into a water quality infrastructure system that includes strategically located rain gardens,filtration areas, and under ground detention. Post-developed runoff will be directed into underground cisterns for distribution through the campus irrigation system.

8. Daylight

Effective daylight can offset energy consumption while creating a positive environment to work and learn. Daylighting was integrated with exterior shading to allow no net increase to the cooling load. Two types of glazing are used to differentiate windows for light versus windows for view. Daylight and occupancy sensors throughout the building reduce use of electricity during daytime hours.

9. Gerdau Ameristeel - Struct. Steel

10. Pine Hall - Unit Paving

9. W.R. Meadows, Inc. - Air/Vapor Barrier

8. Hohmann & Barnard, Inc. - Brick

7. Owens Corning - Thermal Insulation

5. Clark Western - Light Metal Studs

4. Carolina Stalite - Fly Ash

3. Mfr - 66 m. / Extract - 234 m.

2. Mfr - 95 m. / Extract - 95 m.

1. Mfr - 401 m. / Extract - 239 m.

10 Regional Materials

5. 80 - 100% recycled content:

4. 60 - 80% recycled content:

3. 40 - 60% recycled content:

2. 20 - 40% recycled content:

1. 0 - 20% recycled content:
MATERIALS/RESOURCES

30% REGIONAL MATERIALS

*92 materials and their extracts harvested and manufactured regionally (within 500 miles of EPIC site)

1. Carolina Stalite - Fly Ash
 *Mfr - 54 m. / Extract - 53 m.

2. G. Ameristeel - Rebar
 *Mfr - 338 m. / Extract - 338 m.

3. N. A. Stainless - Dec. Metal railings
 *Mfr - 338 m. / Extract - 81 m.

4. Crossville, Inc. - Tiling
 *Mfr - 242 m. / Extract - 86 m.

5. Clark Western - Light Mtl. Studs
 *Mfr - 175 m. / Extract - 105 m

6. Owens Corning - Thermal Insulation
 *Mfr - 242 m. / Extract - 233 m.

7. Hohmann & Barnard, Inc. - Brick
 *Mfr - 344 m. / Extract - 474 m.

 *Mfr - 401 m. / Extract - 239 m.

9. Pine Hall - Unit Paving
 *Mfr - 338 m. / Extract - 338 m.

10. Gerdau Ameristeel - Struct. Steel
 *Mfr - 66 m. / Extract - 223 m.

RECYCLED CONTENT

- 1. 0 - 20% recycled content: 17
- 2. 20 - 40% recycled content: 49
- 3. 40 - 60% recycled content: 34
- 4. 60 - 80% recycled content: 21
- 5. 80 - 100% recycled content: 31

SUSTAINABLE SITES

LEED SCORES

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>NC VERSION 2.2</th>
<th>POINTS POSSIBLE</th>
<th>EARNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI SITE</td>
<td>10/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE: WATER</td>
<td>00/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA: ENERGY</td>
<td>00/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR: MATERIALS</td>
<td>00/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID: INNOVATION</td>
<td>00/05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD: PAVEMENT</td>
<td>00/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL POINTS</td>
<td>40/60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The projected use of reclaimed water and potable water for indoor use is 1,928,518 gallons with 1,331,185 gallons being used strictly for the water closets and urinals. The source for these 1,331,195 gallons is the building's HVAC condensate. This gray water system collects the building's HVAC condensate into a 6,000 gallon underground holding tank. An ultra violet light final disinfection system is utilized to deactivate potential pathogens from the water source. The treated gray water is injected with blue biodegradable dye before distribution to the water closets and urinals. The dye distinguishes the water as non-potable. This project is projected to have an 81% domestic water savings by utilizing low flow fixtures and the previously described gray water system.

North Carolina senate bill #668 requires all new state-owned buildings to use 30% less energy than a typical building of similar size. In order to meet this requirement, the design team utilized an active chilled beam system to provide primary space comfort needs. Each beam will be provided outside air directly from heat recovery units located in the rooftop penthouse. Each heat recovery unit is nearly 80% effective in recovering energy from ventilation air exiting the building to raw outside air entering the building.